Name: \qquad Core \qquad Unit 4 - Scientific Notation Review

Part 1: Converting in Scientific Notation - Write each number in scientific notation

1) 230	2) 5601	3) $14,100,000$	4) 56 million
5) $\frac{2}{10}$	6) 0.00450	7) 0.089	8) 0.00026
9) 0.000000698	10) $\frac{4}{5}$	11) $\frac{3}{1000}$	12) 12 thousandths
12) Speed of light in a vacuum is $299,792,458$ $\mathrm{~m} / \mathrm{s}$	13) Number of seconds in a day is $86,400 \mathrm{~s}$	14) Mean radius of Earth $6,378 \mathrm{~km}$	15) Density of oxygen gas at $0{ }^{\circ} \mathrm{C}$ and pressure of 101 kPa is $0.00142 \mathrm{~g} / \mathrm{mL}$

Convert the following to scientific notation.

1. $0.005=$ \qquad 6. $0.25=$ \qquad
2. $5,050=$ \qquad
\qquad
3. $0.0008=$ \qquad 8. $0.0025=$
4. $1,000=$ \qquad
5. $500=$ \qquad
6. $1,000,000=$
7. $5,000=$ \qquad

Convert the following to standard notation.

\qquad

1. $1.5 \times 10^{3}=$
2. $1.5 \times 10^{-3}=$ \qquad
3. $3.75 \times 10^{-2}=$ \qquad
4. $3.75 \times 10^{2}=$ \qquad
5. $2.2 \times 10^{5}=$ \qquad
6. $3.35 \times 10^{-1}=$ \qquad
7. $1.2 \times 10^{-4}=$ \qquad
8. $1 \times 10^{4}=$ \qquad
9. $1 \times 10^{-1}=$ \qquad
10. $4 \times 10^{0}=$ \qquad

Part 2: Operations with Scientific Notation - Use the directions in the box to answer each question.

Addition and Subtraction

Before numbers in scientific notation can be added or subtracted, the exponents must be equal.

$\left(3.4 \times 10^{2}\right)+\left(4.57 \times 10^{3}\right)=\left(0.34 \times 10^{3}\right)+\left(4.57 \times 10^{3}\right)$
\uparrow The decimal is moved to the left to increase the exponent.

$$
=(0.34+4.57) \times 10^{3}
$$

$$
=4.91 \times 10^{3}
$$

1) $\left(1.2 \times 10^{5}\right)+\left(5.35 \times 10^{6}\right)$	2) ${ }^{\left(6.91 \times 10^{-2}\right)+\left(2.4 \times 10^{-3}\right)}$
3) $\left(9.70 \times 10^{6}\right)+\left(8.3 \times 10^{5}\right)$	4) $\left(3.67 \times 10^{2}\right)-\left(1.6 \times 10^{1}\right)$
5) $\left(8.41 \times 10^{-5}\right)-\left(7.9 \times 10^{-6}\right)$	6) $\left(1.33 \times 10^{5}\right)-\left(4.9 \times 10^{4}\right)$
7) What is the difference between 8×10^{8} and 2×10^{5}.	8) The distance between Howard's house and the school is 521.0469 meters. The distance between Howard's house and his friend, Mya's house, is 837.3346 meters. If Mya walked to Howard's house, and then they both walked to school, how many meters did they walk?
9) $\left(4 \times 10^{3}\right)+\left(3 \times 10^{2}\right)$	10) $\left(9 \times 10^{2}\right)+\left(1 \times 10^{4}\right)$

Multiplication

When numbers in scientific notation are multiplied, only the number is multiplied. The exponents are added.

Division

When numbers in scientific notation are divided, only the number is divided. The exponents are subtracted.

$$
=6.00 \times 10^{3}
$$

1) $\left(4.3 \times 10^{8}\right) \times\left(2.0 \times 10^{6}\right)$	2) $\left(6.0 \times 10^{3}\right) \times\left(1.5 \times 10^{-2}\right)$
3) $\left(1.5 \times 10^{-2}\right) \times\left(8.0 \times 10^{-1}\right)$	$\frac{4)}{1.2 \times 10^{3}}$

5) $\frac{8.1 \times 10^{-2}}{9.0 \times 10^{2}}$	6) $\frac{6.48 \times 10^{5}}{\left(2.4 \times 10^{4}\right)\left(1.8 \times 10^{-2}\right)}$
7) Number of nuclear particles in the sun: 2.0×10^{33} grams $/ 1.7 \times 10^{-24}$ grams/particle	8) Number of stars in the visible universe: 2.0×10^{11} stars/galaxy $\times 8.0 \times 10^{10}$ galaxies
9) Age of the universe in seconds: 1.4×10^{10} years $\times 3.156 \times 10^{7}$ seconds/year	10) Number of electron orbits in one year: $\left(3.1 \times 10^{7}\right.$ seconds/year) / $\left(2.4 \times 10^{-24}\right.$ seconds/orbit)
11) Energy carried by visible light: $\left(6.6 \times 10^{-27}\right.$ ergs/cycle) $\times 5 \times 10^{14}$ cycles	12) Lengthening of Earth day in 1 billion years: $\left(1.0 \times 10^{9} \text { years) } \times 1.5 \times 10^{-5} \mathrm{sec} / \mathrm{year}\right.$
13) Tons of TNT needed to make a crater 100 km across $4.0 \times 10^{13} \times\left(1.0 \times 10^{15}\right) /\left(4.2 \times 10^{16}\right)$	14) Average density of the sun: $1.9 \times 10^{33} \text { grams } / 1.4 \times 10^{33} \mathrm{~cm}^{3}$
15) Number of sun-like stars within 300 light years $\left(2.0 \times 10^{-3}\right.$ stars $) \times 4.0 \times 10^{6}$ cubic light-yrs	16) Density of the Orion Nebula: $\left(3.0 \times 10^{2} \times 2.0 \times 10^{33} \text { grams }\right) /\left(5.4 \times 10^{56} \mathrm{~cm}^{3}\right)$

Part 3: Review of Operations with Exponents

| 1) Simplify the expression: |
| :--- | :--- | :--- |
| $3 x^{3}(x y)^{4}$ |\quad| 2) What is the greatest factor |
| :--- |
| that both expressions have in |
| common: |
| $4(x y)^{2}$ and $3(x)^{3} y$ | | 3) What is the greatest
 common factor from both
 expressions:
 $8 x^{4} y^{4}$ and $-12 x^{3} z^{2}$ |
| :--- |
| 4) Evaluate the expression:
 $3 x(x-2)$ |
| 5) Simplify the expression:
 $\frac{\left(a b^{2} c^{3}(b c)^{-2}\right)}{a^{2}}$ |
| 6) Simplify the expression:
 $3 x^{2}(x y)^{3}$ |

